1.9 KiB
1.9 KiB
Day 2 — Core Data Processing with Python
File: Day2_Core_Data_Processing.md
# 📅 Day 2 — Core Data Processing with Python
## 🎯 Goal
Transform raw data into structured, insightful information using Python.
---
## 🧩 Tasks
### 1. Integrate Python in n8n
- Add an **Execute Code** node after the Merge node (from Day 1).
- Receive combined JSON data from sales and reviews.
---
### 2. Data Cleaning & Aggregation
- Load JSON data into two Pandas DataFrames:
```python
import pandas as pd
sales_df = pd.DataFrame($json["sales"])
reviews_df = pd.DataFrame($json["reviews"])
Clean data: handle missing values, convert data types, remove duplicates.
Aggregate sales data:
python
Copy code
sales_summary = sales_df.groupby("product_id").agg(
total_revenue=("price", "sum"),
units_sold=("quantity", "sum")
).reset_index()
3. Sentiment Analysis
Use NLTK VADER for review sentiment:
python
Copy code
from nltk.sentiment.vader import SentimentIntensityAnalyzer
sid = SentimentIntensityAnalyzer()
reviews_df["sentiment_score"] = reviews_df["review_text"].apply(
lambda text: sid.polarity_scores(text)["compound"]
)
Categorize sentiment: Positive, Neutral, Negative.
Aggregate sentiment per product:
python
Copy code
sentiment_summary = reviews_df.groupby("product_id").agg(
avg_sentiment_score=("sentiment_score", "mean"),
num_reviews=("review_text", "count")
).reset_index()
4. Combine & Output
Merge aggregated sales and sentiment:
python
Copy code
final_df = pd.merge(sales_summary, sentiment_summary, on="product_id", how="left")
return json.loads(final_df.to_json(orient="records"))
✅ Deliverable
Python node outputs a clean JSON object containing:
Aggregated sales data
Sentiment scores per product
💡 Solution
Combined DataFrame ready for storage and reporting in Day 3.
All data is clean, structured, and enriched.