Day2_Core_Data_Processing.md
Day 2 — Core Data Processing with Python
This commit is contained in:
48
Day2_Core_Data_Processing.md
Normal file
48
Day2_Core_Data_Processing.md
Normal file
@@ -0,0 +1,48 @@
|
|||||||
|
# 📅 Day 2 — Core Data Processing with Python
|
||||||
|
|
||||||
|
## 🎯 Goal
|
||||||
|
Transform the raw data into structured, insightful information using Python’s analytical power.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 🧩 Tasks
|
||||||
|
|
||||||
|
### 1. Integrate Python into n8n
|
||||||
|
- Add an **Execute Code** node after the Merge node (from Day 1).
|
||||||
|
- This node receives combined JSON data from sales and reviews.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### 2. Write the Python Script (Data Cleaning & Aggregation)
|
||||||
|
- Use **Pandas** for structured data manipulation.
|
||||||
|
- Inside the Execute Code node:
|
||||||
|
- Load the JSON input into two DataFrames:
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
sales_df = pd.DataFrame($json["sales"])
|
||||||
|
reviews_df = pd.DataFrame($json["reviews"])
|
||||||
|
```
|
||||||
|
- Clean the data:
|
||||||
|
- Handle missing values.
|
||||||
|
- Convert data types.
|
||||||
|
- Remove duplicates.
|
||||||
|
- Aggregate sales data:
|
||||||
|
```python
|
||||||
|
sales_summary = sales_df.groupby("product_id").agg(
|
||||||
|
total_revenue=("price", "sum"),
|
||||||
|
units_sold=("quantity", "sum")
|
||||||
|
).reset_index()
|
||||||
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
### 3. Add Sentiment Analysis
|
||||||
|
- Use **VADER** from the `nltk` library for text sentiment scoring.
|
||||||
|
```python
|
||||||
|
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
||||||
|
sid = SentimentIntensityAnalyzer()
|
||||||
|
|
||||||
|
reviews_df["sentiment_score"] = reviews_df["review_text"].apply(
|
||||||
|
lambda text: sid.polarity_scores(text)["compound"]
|
||||||
|
)
|
||||||
Reference in New Issue
Block a user