diff --git a/Day_003_Data_Storage_and_Reporting.md b/Day_003_Data_Storage_and_Reporting.md new file mode 100644 index 0000000..e3bb272 --- /dev/null +++ b/Day_003_Data_Storage_and_Reporting.md @@ -0,0 +1,46 @@ +## 🎯 Goal +Persist the processed data for historical analysis and send a **daily summary report** to stakeholders. + +--- + +## 🧩 Tasks + +### 1. Set Up a Data Destination +- Create a **Google Sheet** or **Database Table**. +- Define columns such as: +Date | ProductID | TotalRevenue | UnitsSold | AvgSentimentScore + +yaml +Copy code + +--- + +### 2. Store the Processed Data +- Add a **Google Sheets Node** after the Python node. +- Authenticate your Google account. +- Configure it to **Append** new rows. +- Map each field from the Python output to the corresponding columns. + +--- + +### 3. Craft the Summary Report +- Add a **Set Node** to create a short summary message. +- Example: +Daily Report: Top product by revenue was {{ $json.product_name }} with ${{ $json.total_revenue }} in sales. + +yaml +Copy code + +--- + +### 4. Send the Report +- Add a **Slack** or **Email Node**. +- Send the summary to: +- A Slack channel (e.g., #daily-sales-reports), or +- A mailing list for stakeholders. + +--- + +## ✅ Deliverable +- The workflow appends daily data to a Google Sheet. +- A formatted summary is sent automatically to Slack or email.