update README with comprehensive requirements and dependencies

This commit is contained in:
2025-12-15 22:20:04 +05:30
parent 58bf38e993
commit 7e7ba356b4

View File

@@ -37,9 +37,16 @@ To run these notebooks, you'll need:
- Pillow - Pillow
- NumPy - NumPy
- OpenCV-Python - OpenCV-Python
- Moondream model dependencies
- Matplotlib - Matplotlib
- Scikit-image - Scikit-image
- Moondream (for Moondream models)
- SAM (Segment Anything) and Grounding DINO (for segmentation tasks)
- Hugging Face Accelerate (for optimized inference)
- Requests
- Json (standard library, but used extensively)
- tqdm (for progress bars)
- BitsAndBytes (for quantized models)
- SentencePiece (for tokenization, if needed)
## Setup ## Setup
@@ -47,9 +54,14 @@ To run these notebooks, you'll need:
2. Install required dependencies: 2. Install required dependencies:
```bash ```bash
pip install torch torchvision pip install torch torchvision torchaudio
pip install transformers pillow numpy opencv-python matplotlib scikit-image pip install transformers pillow numpy opencv-python matplotlib scikit-image
pip install moondream pip install moondream jupyter
pip install accelerate bitsandbytes sentencepiece
pip install supervision # For visualization and annotations
pip install segment-anything # For SAM model
pip install groundingdino-py # For Grounding DINO
pip install huggingface_hub
``` ```
3. Launch Jupyter: 3. Launch Jupyter:
@@ -81,10 +93,14 @@ Each notebook serves a specific purpose in the image annotation pipeline:
## Dependencies ## Dependencies
- [Moondream](https://github.com/vikhyat/moondream) - Efficient vision-language model - [Moondream](https://github.com/vikhyat/moondream) - Efficient vision-language model
- [Segment Anything (SAM)](https://segment-anything.com/) - Advanced segmentation model
- [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO) - Open-set object detection
- PyTorch - Deep learning framework - PyTorch - Deep learning framework
- OpenCV - Computer vision operations - OpenCV - Computer vision operations
- COCO API - Annotation format handling - COCO API - Annotation format handling
- Transformers - Hugging Face library for model processing - Transformers - Hugging Face library for model processing
- Supervision - Utilities for computer vision workflows
- Accelerate - Optimization library for PyTorch models
## Notes ## Notes