first commit
This commit is contained in:
11939
Image_Annotation_Testing_Satyam.ipynb
Normal file
11939
Image_Annotation_Testing_Satyam.ipynb
Normal file
File diff suppressed because one or more lines are too long
328
Moondream3_to_COCO_Satyam.ipynb
Normal file
328
Moondream3_to_COCO_Satyam.ipynb
Normal file
File diff suppressed because one or more lines are too long
688
Moondream_Segmentation_Satyam.ipynb
Normal file
688
Moondream_Segmentation_Satyam.ipynb
Normal file
File diff suppressed because one or more lines are too long
73
README.md
Normal file
73
README.md
Normal file
@@ -0,0 +1,73 @@
|
|||||||
|
# Image Annotation Project
|
||||||
|
|
||||||
|
This repository contains Jupyter notebooks for image annotation using state-of-the-art vision-language models. The project focuses on image understanding, segmentation, and COCO format conversion.
|
||||||
|
|
||||||
|
## Notebooks
|
||||||
|
|
||||||
|
### 1. Image_Annotation_Testing_Satyam.ipynb
|
||||||
|
|
||||||
|
This notebook provides testing capabilities for image annotation using advanced vision-language models. It includes various experiments to evaluate the performance and capabilities of the models in understanding and annotating images.
|
||||||
|
|
||||||
|
### 2. Moondream_Segmentation_Satyam.ipynb
|
||||||
|
|
||||||
|
This notebook implements segmentation capabilities using the Moondream vision-language model. It focuses on segmenting objects within images and generating precise boundaries for different objects in the scene.
|
||||||
|
|
||||||
|
### 3. Moondream3_to_COCO_Satyam.ipynb
|
||||||
|
|
||||||
|
This notebook handles the conversion of annotations to the COCO (Common Objects in Context) format. It takes segmented objects and converts them into a standardized JSON format suitable for training computer vision models.
|
||||||
|
|
||||||
|
## Prerequisites
|
||||||
|
|
||||||
|
To run these notebooks, you'll need:
|
||||||
|
|
||||||
|
- Python 3.8+
|
||||||
|
- Jupyter Notebook or JupyterLab
|
||||||
|
- PyTorch
|
||||||
|
- Transformers
|
||||||
|
- Pillow
|
||||||
|
- NumPy
|
||||||
|
- OpenCV
|
||||||
|
- Moondream model dependencies
|
||||||
|
|
||||||
|
## Setup
|
||||||
|
|
||||||
|
1. Clone or download this repository
|
||||||
|
2. Install required dependencies:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install torch torchvision
|
||||||
|
pip install transformers pillow numpy opencv-python
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Launch Jupyter:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
jupyter notebook
|
||||||
|
```
|
||||||
|
|
||||||
|
4. Open any of the notebooks and run the cells
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
Each notebook can be run independently depending on your specific needs:
|
||||||
|
|
||||||
|
1. Use `Image_Annotation_Testing_Satyam.ipynb` to test and evaluate image annotation capabilities
|
||||||
|
2. Use `Moondream_Segmentation_Satyam.ipynb` for object segmentation tasks
|
||||||
|
3. Use `Moondream3_to_COCO_Satyam.ipynb` to convert annotations to COCO format
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
|
||||||
|
- [Moondream](https://github.com/vikhyat/moondream) - Vision-language model
|
||||||
|
- PyTorch - Deep learning framework
|
||||||
|
- OpenCV - Computer vision library
|
||||||
|
- COCO API - For annotation format handling
|
||||||
|
|
||||||
|
## Notes
|
||||||
|
|
||||||
|
- Ensure you have sufficient GPU memory for running vision-language models
|
||||||
|
- Models may require internet connectivity for initial downloads
|
||||||
|
- Results may vary depending on the complexity of the images
|
||||||
|
|
||||||
|
## Author
|
||||||
|
|
||||||
|
Satyam - Image Annotation Project
|
||||||
Reference in New Issue
Block a user